The Resurgence of Reference Quality Genome Sequence Michael Schatz

Jan 12, 2016 PAG XXIV

@mike_schatz / #PAGXXIV

Summary & Recommendations

Reference quality genome assembly is here

- Use the longest possible reads for the analysis
- Don't fear the error rate, coverage and algorithmics conquer most problems

Megabase N50 improves the analysis in every dimension

- Better resolution of genes and flanking regulatory regions
- Better resolution of transposons and other complex sequences
- Better resolution of chromosome organization
- Better sequence for all downstream analysis

The year 2015 will mark the return to reference quality genome sequence

Selected Genomes from 2015

Saccharomyces cerevisiae ONT + Illumina

Goodwin et al. (2015) Genome Research. doi: 10.1101/gr.191395.115 Macrostomum lignano PacBio

Wasik et al. (2015) PNAS. doi: 10.1073/pnas.1516718112 **Ananas comosus** Illumina + Moleculo + PacBio

Ming et al. (2015) Nature Genetics. doi: doi:10.1038/ng.3435

#1MbpCtgClub

Selected Genomes from 2015

Saccharomyces cerevisiae ONT + Illumina

Goodwin et al. (2015) Genome Research. doi: 10.1101/gr.191395.115 Macrostomum lignano PacBio

<section-header><text><text>

Ananas comosus

Illumina + Moleculo + PacBio

Ming et al. (2015) Nature Genetics. doi: doi:10.1038/ng.3435

#1MbpCtgClub

Wasik et al. (2015) PNAS. doi: 10.1073/pnas.1516718112

Contig N50

Def: 50% of the genome is in contigs as large as the N50 value

Assembly Performance

Def: 50% of the genome is in contigs as large as the N50 value

Selected Genomes from 2015

#1MbpCtgClub

NanoCorr: Nanopore-Illumina Hybrid Error Correction

http://schatzlab.cshl.edu/data/nanocorr/

- I. BLAST Miseq reads to all raw Oxford Nanopore reads
- 2. Select non-repetitive alignments
 - First pass scans to remove "contained" alignments
 - Second pass uses Dynamic
 Programming (LIS) to select an optimal set of high-identity alignments
- 3. Compute consensus of each Oxford Nanopore read
 - State machine of most commonly observed base at each position in read

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome

Goodwin, S et al. (2015) Genome Research. doi: 10.1101/gr.191395.115

NanoCorr Yeast Assembly

Contiguity: Idealized and Realized Contig Length

Oxford Nanopore sequencing, hybrid error correction, and de novo assembly of a eukaryotic genome

Goodwin, S et al. (2015) Genome Research. doi: 10.1101/gr.191395.115

NanoCorr Yeast Assembly

Completeness: Genomic Feature Analysis

NanoCorr Yeast Assembly

Correctness: Structural errors + Sequence fidelity

What should we expect from an assembly?

The Three C's of Genome Quality

I. Contiguity

How does read length and sequence coverage impact contig lengths?

2. Completeness

How successful will we be reconstructing genes and other features?

3. Correctness

Does the assembled sequence faithfully represent the genome?

Data Sources:

- Meta-analysis of available 2nd and 3rd generation assemblies
- Historical analysis to the improvements to the human genome
- De novo assemblies of idealized sequencing data

Human Analysis N50s*

Technology	Application	N50	Sample	Citation
Illumina Discovar	contig asm	178,000	NA12877	Putnam et al. (2015) arXiv:1502.05331
Moleculo Prism	phasing	563,801	NA12878	Kuleshov et al. (2014) Nature BioTech. doi:10.1038/nbt.2833
10X GemCode Long Ranger	phasing	21,600,000	GIAB	Zook et al. (2015) bioRxiv. doi: http://dx.doi.org/10.1101/026468
PacBio FALCON	contig asm	22,900,000	JCV-1	Jason Chin, PAG2016
BioNano IrysSolve	scaffold	28,800,000	NA12878	Pendleton et al. (2015) Nature Methods. doi:10.1038/nmeth.3454
Dovetail HiRise	scaffold	29,900,000	NA12878	Putnam <i>et al.</i> (2015) arXiv:1502.05331

*Cross analysis of different applications

3rd Generation Sequencing Applications

Human Analysis N50s*

Technology	Application	N50	Sample	Citation
Illumina Discovar	contig asm	178,000	NA12877	Putnam et al. (2015) arXiv:1502.05331
Moleculo Prism	phasing	563,801	NA12878	Kuleshov et al. (2014) Nature BioTech. doi:10.1038/nbt.2833
10X GemCode Long Ranger	phasing	21,600,000	GIAB	Zook et al. (2015) bioRxiv. doi: http://dx.doi.org/10.1101/026468
PacBio FALCON	contig asm	22,900,000	JCV-1	Jason Chin, PAG2016
BioNano IrysSolve	scaffold	28,800,000	NA12878	Pendleton et al. (2015) Nature Methods. doi:10.1038/nmeth.3454
Dovetail HiRise	scaffold	29,900,000	NA12878	Putnam <i>et al.</i> (2015) arXiv:1502.05331

*Cross analysis of different applications

Human Analysis N50s*

Application	N50	Sample	Citation
contig asm	178,000	NA12877	Putnam <i>et al.</i> (2015) arXiv:1502.05331
phasing	563,801	NA12878	Kuleshov et al. (2014) Nature BioTech. doi:10.1038/nbt.2833
phasing	21,600,000	GIAB	Zook et al. (2015) bioRxiv. doi: http://dx.doi.org/10.1101/026468
contig asm	22,900,000	JCV-1	Jason Chin, PAG2016
scaffold	28,800,000	NA12878	Pendleton et al. (2015) Nature Methods. doi:10.1038/nmeth.3454
scaffold	29,900,000	NA12878	Putnam <i>et al.</i> (2015) arXiv:1502.05331
	Application contig asm phasing phasing contig asm scaffold scaffold	Application N50 contig asm 178,000 phasing 563,801 phasing 21,600,000 contig asm 22,900,000 scaffold 28,800,000 scaffold 29,900,000	Application N50 Sample contig asm 178,000 NA12877 phasing 563,801 NA12878 phasing 21,600,000 GIAB contig asm 22,900,000 JCV-1 scaffold 28,800,000 NA12878 scaffold 29,900,000 NA12878

*Cross analysis of different applications

Idealized Human Assemblies

Perfect Repeats in the Rice Genome

Perfect Repeats Across the Tree of Life

Idealized Human Assemblies

De novo human assemblies

What happens as we sequence the human genome with longer reads?

- Red: Sizes of the chromosome arms of HG19 from largest to shortest
- Green: Results of our assemblies using progressively longer and longer simulated reads
- Orange: Results of Illumina/ ALLPATHS assemblies

Lengths selected to represent idealized biotechnologies:

- mean I -2: Moleculo/PacBio/ONT
- mean2-4: ~10x / Chromatin
- mean I 6-32: ~Optical mapping (log-normal with increasing means)

How long will the contigs be using reads/spans of different lengths?

How long will the contigs be using reads/spans of different lengths?

How long will the contigs be using reads/spans of different lengths?

How

The Resurgence of Reference Quality Genomes

Hayan Lee^{1,2}, James Gurtowski¹, Shinjae Yoo³, Maria Nattestad¹, Shoshana Marcus⁴, Sara Goodwin¹, W. Richard McCombie¹, and Michael C. Schatz^{1,2}*

¹Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724
²Department of Computer Science, Stony Brook University, Stony Brook, NY, 11794
³Computational Science Center, Brookhaven National Laboratory, Upton, NY, 11973
⁸Department of Mathematics and Computer Science, Kingsborough Community College, City University of New York, Brookhyn, NY 11234

* corresponding author: mschatz@cshl.edu

Abstract

Several new 3st generation long-range DNA sequencing and mapping technologies have recently become available that are creating a resurgence in high quality genome sequencing. Unlike their 2st generation, short-read counterparts that can resolve a few hundred base-pairs, the new technologies routinely sequence 10,000 bp reads or map 100,000 bp molecules. The greater lengths are being used to enhance a number of important problems in genomics and medicine, including *de novo* genome assembly, structural variation analysis, and haplotype phasing. Here we discuss the capabilities of the technologies, and show how they will improve the "3Cs of Genomics": the contiguity, completeness, and correctness of genome sequencing. We also propose a model using support vector regression that predicts assembly performance using different read lengths or coverage that can be used for evaluating technologies. Overall, we anticipate these will unlock the genomic "dark matter" and provide many new insidut into evolution.

Summary & Predictions

The Three C's of Genome Quality

I. Contiguity

How does read length and sequence coverage impact contig lengths?

2. Completeness

How successful will we be reconstructing genes and other features?

3. Correctness

Does the assembled sequence faithfully represent the genome?

Predictions for 2016

- First 100 genomes will join the #1MbpCtgClub
- Enter the era of complete chromosome-level scaffolding
- First glimpses of the true complexity of chromosome evolution

Acknowledgements

Schatz Lab

Rahul Amin Han Fang Tyler Gavin James Gurtowski Hayan Lee Zak Lemmon Giuseppe Narzisi Maria Nattestad Aspyn Palatnick Srividya Ramakrishnan Fritz Sedlazeck Rachel Sherman Greg Vurture Alejandro Wences

CSHL

Hannon I ab

Gingeras Lab

Jackson Lab

Tossifov Lab

Lippman Lab

Martienssen Lab

McCombie Lab

Tuveson Lab

Ware Lab

Wigler Lab

Skiena Lab

Patro Lab

SBU

Hicks Lab

Levy Lab

Lyon Lab

Cornell

Susan McCouch Lyza Maron Mark Wright

OICR

John McPherson Karen Ng Timothy Beck Yogi Sundaravadanam

NYU

Jane Carlton Elodie Ghedin

SFARI SIMONS FOUNDATION AUTISM RESEARCH INITIATIVE

ALFRED P. SLOAN FOUNDATION

Thank you http://schatzlab.cshl.edu @mike_schatz / PAGXXIV